
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energyʼs National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

Parallel Network Analysis

Cynthia A. Phillips

Sandia National Laboratories

Topical presentation 2009 SIAM Annual Meeting, July 10

Slide 2

My Topic

• What’s new with me (Sandia National Laboratories) in
 Discrete math/algorithms ∩
 High-performance computing ∩
 Applications?

Why would we want to use a parallel algorithm for an application?
• When we have to:

– Too Slow
– Too Big
– Too Inaccurate

• Application evolution
– More constraints
– Finer discretization
– Larger instances

Slide 3

Overview

• Applications
– Sensor network design/management
– Analysis of large-scale (e.g. social) networks

• Methods
– Coarse-grained (“embarrassing” parallelism)
– Unusual (for us) hardware/architecture

• Old primitives
– Memory reduction → parallel algorithms

Slide 4

A Sensor Placement Problem

Issue: Contamination released in a
municipal water network

Goal: Place k sensors on network
nodes as an early warning system

– Protect human populations
– Limit network remediation

costs

Sponsored by the US Environmental
Protection Agency (EPA) National
Homeland Security Research Center
(NHSRC)

Slide 5

One Water Sensor Placement Formulation

Given an enumerable set of events: (location, time) pairs
• Simulate the evolution of a contaminant plume
• For each event determine

– Where event can be observed
– Impact prior to that observation

• Assume first sensor witness of contamination signals general alarm

• Minimize average impact

There can be 100,000s to millions of scenarios.
– Parallelize the simulations and impact calculations

Obvious, but important: from weeks to hours using cluster

Slide 6

Finding an Approximate Solution

• For more complex versions, can express as an integer program
– Linear objective, linear and integrality constraints

• Benchmarks heuristics
• A good approximate solution

– Speeds search (enables pruning)
– Allows early stop

• Use linear programming relaxation (drop integrality)
• LP optimum gives lower bound, fractional solution
• Goal: “round” to a real solution

• Trials completely independent

Slide 7

Given N variables with 0 < xi
* < 1 for i = 1..N and

• Select k of the xi
* such that probability of selecting i is reasonably

related to xi
*

In multiple applications, this selection is the main (only) decision
• Sensor placement
• Mobile sink scheduling for wireless sensor networks
• Picking a tail in robust optimization formulations
• Enforcing node degree in graph generation

k of N selection

Slide 8

Randomized Rounding

• Simplest form: treat 0 ≤ xi ≤ 1 as probability

• Set yi = 1 with probability xi and yi = 0 otherwise

• If don’t select exactly k, try again (and again…)

• But can use conditional Poisson sampling to efficiently sample from
this “lucky” distribution (Chen, Dempster, Lui, 2004)

• Use dynamic programming to precompute conditional probabilities
• Decode a random toss to a feasible solution

• Selects uniformly over “lucky” tosses.

Slide 9

Rounding with One Cardinality Constraint

Doerr (2004), motivated by Srinivasen (2001)

Finds a randomized rounding y such that:

•Pr(yi = 1) = xi*

• (respects cardinality constraint)

Slide 10

Simple (base) case

All xi* are 1/2.
Let X be the set of xi* with value 1/2.

|X| is even because and k is integer

Pair elements of X: (xi*,xj*)

Set (yi,yj) = (1,0) or (0,1) each with probability 1/2.

Slide 11

General Case

• Do the base case for lowest order bit (most to right of binary
point)

• After this operation, the rightmost bit is in place - 1.
• Iterate to compute y in O(n) time.

– n = number of variables 0 < xi* < 1
– = lowest order bit of any of the xi*, maybe 1000

• Numerical issue: In (floating point) practice, not an integer

!

l

!

l

!

l

!

l

Slide 12

Cardinality-Constrained Rounding Summary

• Doerr
– O(nL) time (multiprecision)
– Paired total correlation, otherwise independent
– Pr(yi = 1) = xi*

• Conditional Poisson sampling
– O(k(n-k)) preprocessing (k < 100), then O(n) sampling
– Pairwise independence
–

– 3 orders of magnitude faster
– Any subset is possible

!

p(yi =1) = p(yi =1 k selected)

Slide 13

Embrace “Embarrassing” Parallelism

• Other recent uses
– Integer programming pseudocost initialization
– Feasibility pump integer programming heuristic
– Progressive Hedging for stochastic programs
– Constraint generation for scheduling mobile sinks in a wireless

network

• Embarrassing parallelism increases the maximum feasible problem
size

• Buys time to do the harder parallelization if necessary
• Using it can present other interesting algorithmic questions

Slide 14

Graph Analysis

• Nodes (circles) represent entities
• Edges (lines) represent a relationship between a pair of entities
• Nodes and/or edges can have labels (names) and weights (values)

Alice

Bob

Carla

Talk, 15min

Email, 3

Phone call, 20min

Text msg, 2

Text msg, 6

Communication Graph

Slide 15

A Semantic Relationship Graph

Every path between two points represents a potential relationship

John

Political
Fundraising

Event

Dave Greg

JillSusan
Married to

Works with

Bridge partner

Dentist/patient
Neighbor

Attended
Catered

Kids are
friends

Slide 16

Analysis of Massive Graphs

• Finding communities
– Subgraphs where nodes are more connected to each other than

to the rest of the graph
• Exploring relationships between individuals
• Finding patterns (normal/abnormal)

• Power law degree distribution common

Twitter social network (|V|≈200M)

 [Akshay Java, 2007]
[Clauset, 2007] Degree (log scale)

Frequency
(log scale)

Slide 17

Graph Algorithms

• There are many good serial algorithms (powerful modeling tool)
– Generally nodes gather information from neighbors, traversals
– Large amount of communication relative to computation
– Limited locality, unpredictable

This is hard for
• Distributed memory: how to partition the graph?
• SMP (shared): cache management

1 1

a
c

d

h
i

e f g

b

1
2

1 2

2

3

0

Breadth-First Search Levels

Slide 18

Caveat

There are lots of parallel architectures/systems, many new
• Distributed memory - tightly coupled or cluster
• Symmetric Memory Processors (SMP)
• Grid
• Cloud
• Multicore
• Graphical Processing Units (GPUs)
• Massive multithreading (XMT)

For any given application, one of these may be faster and/or give
better performance/unit cost.

Example (Devine, Plimpton): matrix-vector multiplication on a
distributed-memory machine (pagerank, some graph traversal)

Slide 19

Massive Multithreading: The Cray MTA-2

• Slow clock rate (220Mhz)

• 128 “streams” per processor

• Global address space

• Word-level synchronization
• Atomic increments

• Simple, serial-like programming model

• Advanced parallelizing compilers

Latency Tolerant:

important for Graph
Algorithms

No Processor Cache

Hashed Memory

Slide 20

Cray MTA Processor

• Each thread can have up to 8 memory refs in flight

• Round trip to memory ~150 cycles (MTA-2)

• New Cray XMT combines up to 8192 MTA proc. with Red
Storm network

• Faster clock, but less network bandwidth

• More memory (up to 128TB), but slower memory

Slide 21

Additional Challenges

• Deep pipeline (21)
• One instruction per thread in the pipe

The good news: FAST context switches (one clock cycle)
The bad news: Context switch is mandatory every clock cycle

• Example: 40 streams, each with 4 memory references in flight will
tolerate latency

• One processor is approximately equal to a linux box if using
perfectly

Slide 22

Unweighted S-T Connectivity

• Compute the minimum number of edges between two specific nodes

BFS from both s and t till they meet

Computational example:
• Erdos-Renyi graphs
• Expected shortest path is constant sized
• 5 trials for each of 10 random s-t pairs

a
c

d

h
i

e f g

b Shortest i-to-g
path is length 3

Slide 23

XMT Strong Scaling
BlueGene/L 32,000p (2005)

PBGL (on 2GHz Cluster) w/ghost nodes

XMT 512p

96p
120p

XMT 16p

XMT 4p

Slide 24

Programming the XMT

• Compiler directives
– As with Cilk++, permission, not commands

• Negotiate with the compiler
• Multithreaded graph library (MTGL) encapsulates some primitives

(e.g. BFS)
• Compiler recognizes a reduction:

ba c d

e f
r

10

2 7 1

8

18
total := 0
For i := 1 to n
 total += x[i]

8x:

Slide 25

A+B+C+D

P0
P1

P2

P3

A
B

D
C

A
A+B

A+B+C
Scan

Parallel Prefix (Prefix-sum, Scan)

• Introduced by Blelloch [1990].
• “Sum” is binary associative (+,*,min,max, left-copy)
• Applications: lexically comparing strings of characters, adding

multiprecision numbers, evaluating polynomials, sorting and
searching.

C+D

P0
P1

P2

P3

A
B

D
C

A
A+B
 C

Segmented Scan

1
1

1
0

Slide 26

Parallel prefix example in BFS

• Parallelize each level of a breadth-first search
• Create C chunks by equally dividing the neighborhood of the nodes

currently in the queue

0 1 2 3

thread 0 thread 1 thread 2

Slide 27

Parallel prefix example in BFS
• Total work 12. Each thread gets four (I + 1 to 4i).

7 10 11 12

thread 0 thread 1 thread 2

7 3 1 1 degree

cumulative degree

Slide 28

Connected Components Problem

• Give each node a label
• Two nodes have the same label if there is a path between them

a
c

d

h
i

e f g

b
j

l
k

nm

r
qp

C1

C4

C3

C2

Slide 29

Connected Components on XMT (Power Law)

• Do a parallel BFS from the node of largest degree
– Will likely label the largest (great) component

Giant Connected Component

Slide 30

Connected Components on XMT (Power Law)

• Clean up with Shiloach-Vishkin PRAM algorithm
• Hook with edges, pointer jumping to create a star

a
c

d

h
i

e f g

b
Start as own leader (label)

e
a
b

i
h

c d f g
Component small.
No significant hot spot

Slide 31

Community Detection

• We are applying unconstrained facility location to finding
communities on the XMT [See Jon Berry (MS75, 10:30) for a bit
more]

• Motivated by EPA water sensor network problem
– EPA wanted low-memory algorithms (run on PC)
– Sensor placement problem is p-median (facility location)
– We adapted code from COIN-OR for unconstrained facility

location

Slide 32

Low-Memory to Parallel

• Streaming algorithms

• Answer a question as the data set streams by
– Use much less local space than the stream size

• Example: Watch a permutation of 1..n (n known) with one number
missing. You have space for one number. Determine the missing
number.

• Answer: store the sum of the numbers you have seen.

Slide 33

W-Stream

• Read a stream, write a stream for another pass

• Unroll for a parallel machine that keeps the streams in flight/use:

Stream 0 Stream i+1

Stream 0 Stream 1 Stream 2

Slide 34

Connected Components, W-Stream

• Input: edges of finite graph in a stream (v1, v2), …, (vi, vj)
• Output: (edge, label) pairs [label will be a vertex name, star]

Stream has two parts:
A: edges between partial components

– Initially the graph edges
B: (node, label) pairs

– Initially (vi, vi) implicitly

Slide 35

W-Stream Connected Components

• For each processor (stage), accept edges from the A stream and
compute connected components (stars) until memory full

e b

hf g

a
c

d

h
i

e f
g

b

Slide 36

W-Stream Connected Components

For rest of A stage
• Map known nodes to labels
• Drop intracomponent edges

e b

hf g

a
c

d

h
i

e f
g

b

A Output: (i,b) for (i,h)
 (c,e) for (c,g)
 drop (e,g)
 rest unchanged

Slide 37

Connected Components W-Stream

• At first stage, after last end, output A/B boundary marker and list
the components:

e b

hf g

Output: (f,e), (g,e), (e,e), (h,b)

Slide 38

Connected Components W-stream

• Repeat A phase
• On B update labels as necessary

a
c

d

h
i

e f
g

b e

b

i

b a d

c

e

Output:
A: (i,c) from (a,c) and (a,e)
B: (f,c) for (f,e)
 (g,c) for (g,e)
 (e,c) for (e,e)
 (h,i) for (h,b)
After marker: (b,i), (a,i), (d,i) (i,i) (c,c)
Note: e was done in phase A

Slide 39

The interconnection of concepts

• Thanks to: Jon Berry, Bruce Hendrickson, Karen Devine, Steve Plimpton,
Bill Hart, Erik Boman, Cray Inc, The US EPA, Michael Bender, Nick Edmonds,
Jeremiah Willcock, David Mizell, Kamesh Madduri

Sensor
networks

Social
networks

K of N
Scenario

simulations

Facility
location

Low memory

XMT

Streams

Coarse-grained
parallelism

Progressive
hedging

Bad Santa

Community
detection Connected

components

s-t connectivity

BFS

scans

CM2

Machine/model

Problem

Application

Method/
Primitive

